Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 107(5): 1654-1661, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30321479

RESUMO

The change in residual stress in plasma enhanced chemical vapor deposition amorphous silicon carbide (a-SiC:H) films exposed to air and wet ambient environments is investigated. A close relationship between stress change and deposition condition is identified from mechanical and chemical characterization of a-SiC:H films. Evidence of amorphous silicon carbide films reacting with oxygen and water vapor in the ambient environment are presented. The effect of deposition parameters on oxidation and stress variation in a-SiC:H film is studied. It is found that the films deposited at low temperature or power are susceptible to oxidation and undergo a notable increase in compressive stress over time. Furthermore, the films deposited at sufficiently high temperature (≥325 C) and power density (≥0.2 W cm-2 ) do not exhibit pronounced oxidation or temporal stress variation. These results serve as the basis for developing amorphous silicon carbide based dielectric encapsulation for implantable medical devices. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1654-1661, 2019.


Assuntos
Compostos Inorgânicos de Carbono/química , Materiais Revestidos Biocompatíveis/química , Compostos de Silício/química , Temperatura Alta , Fenômenos Mecânicos , Membranas Artificiais , Conformação Molecular , Nitrogênio/química , Oxirredução , Oxigênio/química , Propriedades de Superfície , Pressão de Vapor , Água/química
2.
Micromachines (Basel) ; 9(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30424413

RESUMO

Microelectrode arrays that consistently and reliably record and stimulate neural activity under conditions of chronic implantation have so far eluded the neural interface community due to failures attributed to both biotic and abiotic mechanisms. Arrays with transverse dimensions of 10 µm or below are thought to minimize the inflammatory response; however, the reduction of implant thickness also decreases buckling thresholds for materials with low Young's modulus. While these issues have been overcome using stiffer, thicker materials as transport shuttles during implantation, the acute damage from the use of shuttles may generate many other biotic complications. Amorphous silicon carbide (a-SiC) provides excellent electrical insulation and a large Young's modulus, allowing the fabrication of ultrasmall arrays with increased resistance to buckling. Prototype a-SiC intracortical implants were fabricated containing 8 - 16 single shanks which had critical thicknesses of either 4 µm or 6 µm. The 6 µm thick a-SiC shanks could penetrate rat cortex without an insertion aid. Single unit recordings from SIROF-coated arrays implanted without any structural support are presented. This work demonstrates that a-SiC can provide an excellent mechanical platform for devices that penetrate cortical tissue while maintaining a critical thickness less than 10 µm.

3.
J Neural Eng ; 15(1): 016010, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28905812

RESUMO

OBJECTIVE: Most preparations for making neural recordings degrade over time and eventually fail due to insertion trauma and reactive tissue response. The magnitudes of these responses are thought to be related to the electrode size (specifically, the cross-sectional area), the relative stiffness of the electrode, and the degree of tissue tolerance for the material. Flexible carbon fiber ultra-microelectrodes have a much smaller cross-section than traditional electrodes and low tissue reactivity, and thus may enable improved longevity of neural recordings in the central and peripheral nervous systems. Only two carbon fiber array designs have been described previously, each with limited channel densities due to limitations of the fabrication processes or interconnect strategies. Here, we describe a method for assembling carbon fiber electrodes on a flexible polyimide substrate that is expected to facilitate the construction of high-density recording and stimulating arrays. APPROACH: Individual carbon fibers were aligned using an alignment tool that was 3D-printed with sub-micron resolution using direct laser writing. Indium deposition on the carbon fibers, followed by low-temperature microsoldering, provided a robust and reliable method of electrical connection to the polyimide interconnect. MAIN RESULTS: Spontaneous multiunit activity and stimulation-evoked compound responses with SNR >10 and >120, respectively, were recorded from a small (125 µm) peripheral nerve. We also improved the typically poor charge injection capacity of small diameter carbon fibers by electrodepositing 100 nm-thick iridium oxide films, making the carbon fiber arrays usable for electrical stimulation as well as recording. SIGNIFICANCE: Our innovations in fabrication technique pave the way for further miniaturization of carbon fiber ultra-microelectrode arrays. We believe these advances to be key steps to enable a shift from labor intensive, manual assembly to a more automated manufacturing process.


Assuntos
Fibra de Carbono , Eletrodos Implantados , Nervo Hipoglosso/fisiologia , Resinas Sintéticas , Animais , Fibra de Carbono/química , Feminino , Tentilhões , Masculino , Microeletrodos , Resinas Sintéticas/química
4.
J Neural Eng ; 15(1): 016007, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28952963

RESUMO

OBJECTIVE: Foreign body response to indwelling cortical microelectrodes limits the reliability of neural stimulation and recording, particularly for extended chronic applications in behaving animals. The extent to which this response compromises the chronic stability of neural devices depends on many factors including the materials used in the electrode construction, the size, and geometry of the indwelling structure. Here, we report on the development of microelectrode arrays (MEAs) based on amorphous silicon carbide (a-SiC). APPROACH: This technology utilizes a-SiC for its chronic stability and employs semiconductor manufacturing processes to create MEAs with small shank dimensions. The a-SiC films were deposited by plasma enhanced chemical vapor deposition and patterned by thin-film photolithographic techniques. To improve stimulation and recording capabilities with small contact areas, we investigated low impedance coatings on the electrode sites. The assembled devices were characterized in phosphate buffered saline for their electrochemical properties. MAIN RESULTS: MEAs utilizing a-SiC as both the primary structural element and encapsulation were fabricated successfully. These a-SiC MEAs had 16 penetrating shanks. Each shank has a cross-sectional area less than 60 µm2 and electrode sites with a geometric surface area varying from 20 to 200 µm2. Electrode coatings of TiN and SIROF reduced 1 kHz electrode impedance to less than 100 kΩ from ~2.8 MΩ for 100 µm2 Au electrode sites and increased the charge injection capacities to values greater than 3 mC cm-2. Finally, we demonstrated functionality by recording neural activity from basal ganglia nucleus of Zebra Finches and motor cortex of rat. SIGNIFICANCE: The a-SiC MEAs provide a significant advancement in the development of microelectrodes that over the years has relied on silicon platforms for device manufacture. These flexible a-SiC MEAs have the potential for decreased tissue damage and reduced foreign body response. The technique is promising and has potential for clinical translation and large scale manufacturing.


Assuntos
Gânglios da Base/fisiologia , Compostos Inorgânicos de Carbono , Materiais Revestidos Biocompatíveis , Eletrodos Implantados , Córtex Motor/fisiologia , Compostos de Silício , Animais , Compostos Inorgânicos de Carbono/química , Materiais Revestidos Biocompatíveis/química , Estimulação Elétrica/métodos , Tentilhões , Microeletrodos , Ratos , Compostos de Silício/química
5.
Neuromodulation ; 20(8): 745-752, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29076214

RESUMO

OBJECTIVES: Neural stimulation is well-accepted as an effective therapy for a wide range of neurological disorders. While the scale of clinical devices is relatively large, translational, and pilot clinical applications are underway for microelectrode-based systems. Microelectrodes have the advantage of stimulating a relatively small tissue volume which may improve selectivity of therapeutic stimuli. Current microelectrode technology is associated with chronic tissue response which limits utility of these devices for neural recording and stimulation. One approach for addressing the tissue response problem may be to reduce physical dimensions of the device. "Thinking small" is a trend for the electronics industry, and for implantable neural interfaces, the result may be a device that can evade the foreign body response. MATERIALS AND METHODS: This review paper surveys our current understanding pertaining to the relationship between implant size and tissue response and the state-of-the-art in ultrasmall microelectrodes. A comprehensive literature search was performed using PubMed, Web of Science (Clarivate Analytics), and Google Scholar. RESULTS: The literature review shows recent efforts to create microelectrodes that are extremely thin appear to reduce or even eliminate the chronic tissue response. With high charge capacity coatings, ultramicroelectrodes fabricated from emerging polymers, and amorphous silicon carbide appear promising for neurostimulation applications. CONCLUSION: We envision the emergence of robust and manufacturable ultramicroelectrodes that leverage advanced materials where the small cross-sectional geometry enables compliance within tissue. Nevertheless, future testing under in vivo conditions is particularly important for assessing the stability of thin film devices under chronic stimulation.


Assuntos
Eletrodos Implantados/tendências , Desenho de Equipamento/tendências , Microeletrodos/tendências , Neurônios/fisiologia , Animais , Eletrodos Implantados/normas , Desenho de Equipamento/normas , Humanos , Microeletrodos/normas
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 1013-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736436

RESUMO

Functional stability and in-vivo reliability are significant factors determining the longevity of a neural interface. In this ongoing study, we test the performance of a wireless floating microelectrode array (WFMA) over a period of 143 days. The topography of the microelectrodes has allowed for selective stimulation of different fascicles of the rat sciatic nerve. We confirmed that motor evoked thresholds remain stable over time and that the nerve stimulation charges were within tissue safety limits. Importantly, motor evoked responses were elicited at threshold currents in fully awake animals without causing pain or discomfort. These data validate the use of the WFMA system for intraneural interfacing of peripheral nerves for neuroprosthetic and bioelectronics medical applications.


Assuntos
Tecnologia sem Fio , Animais , Estimulação Elétrica , Injeções , Microeletrodos , Ratos , Reprodutibilidade dos Testes , Nervo Isquiático
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 1017-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736437

RESUMO

Here, we report on chronic in-vivo testing of a 16-channel wireless floating microelectrode array (WFMA) in a rat sciatic nerve model. Muscle threshold currents, charge injection levels, and charge density were monitored for electrodes of two WFMA devices implanted into animal subjects over a five month period. This type of wireless stimulation device could eliminate problems associated with percutaneous connectors for a variety of neural prostheses and other medical devices.


Assuntos
Neuroestimuladores Implantáveis , Animais , Eletrodos Implantados , Microeletrodos , Ratos , Nervo Isquiático , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...